

i1

THE EDITOR
Table Of Contents

INTRODUCTIONO..n..-:-.-nn..o--o-.'oolnnlolun‘.!t‘icll..B

SAMPLE USE OF THE ARESCO TEXT EDITOR
Loading The BAitoPisicsainivemearsiinsssoininissssaa
Entering The EQitore:ceeessssvocsescssassassnsnosnssshh
Entering The TeXtssesssvsnasscssssnsnensnsvsasnsesensh
LAigbing The Tomte sewswsm sy s s sos v enmamsessesg oy O
Changing The TeXbteeessisesvsosstsssrsssonassnsasaansa?
* Editor Command SUMMATrY.sseessessasssnssssstsassssseesd

IIT BASIC EDITOR COMMANDS

Entering The TeXteiciseescrassssssssacssassssnssaassed
Correcting Text During Entry.icecesscvsscsacessasssnsed
Listing The TeXtecesssssasnssssanissasisonssnnansnasil
Adding A New Line To The TexXtisiieeesssessevassanssell
Resequencing LineSeesssssscavsasscssssasssssssossssssll
Locating Specific Characters In The Textssisesersesel?
Exiting From The Editorecccscsesccsscesnsssacanssssssll

IV OTHER EDITOR COMMANDS

The Status COMMANA..essesroassssesssnassassasasnsesell
The Assemble Command.seesesessssesesessassssoasceassell
Saving The Text On Audio Cassette Tapicssesassassasl’
Reloading The Text From Audio Cassetteeiesessvesssal’
The QuUary COofaNd:isicisicdsdisniniainitsnssransninild
Changing The Prompt Characterecscesssssssessssasnsssld
Using The Assembler/Editor with An APPLE Printer....17

INTRODUCTION

Congratulations on your purchase of the ARESCO Text Editor
for the APPLE II microcomputer. The editor is an integral
part of the ARESCO Assembler/Text Editor Package For The
APPLE II microcomputer, and will allow you to easily input
and modify text in your APPLE II system memory area.

Although primarily designed to work with the ARESCO APPLE
II Assembler, any text material may be input and edited
using the ARESCO Text Editor.

The ARESCO Text Editor features:

Line numbered text entry and editing
Single-letter mnemonic commands

Automatic linkage to the ARESCO Assembler
Complete compatibility with APPLE audio
cassette or disk interface

*¥ Memory independence. Text may be stored
anywhere in memory, and multiple text
files may reside in memory simultaneously.

* ok %k ¥k

To operate the ARESCO Text Editor as described in this manual,
the following minimum APPLE system 1is required:

APPLE microcomputer system
* 16K RAM
Apple disk or audio cassette for program storage

SAMPLE USE OF THE ARESCO TEXT EDITOR

Loading The Editor

The ARESCO Assembler/Text Editor is loaded into APPLE memory
from the ARESCO program tape, using the monitor load routines.
Type 2000.3800R on the APPLE keyboard, press PLAY on the cas-
sette unit, and then press the carriage return.

Entering The Editor

To start the editor, type 3743G on the keyboard, and press
the carriage return. The editor will respond with BASE= on
the screen. You should reply by typing the hexadecimal start
address at which you wish your block of source text to begin.
The editor will then print N OR 0? on the screen, asking you
if this is to be a new file or an old one. If you wish to
edit text already placed in memory (from an audio tape load,
for exémple), you would respond by typing O. For the pur-
poses of our example, enter an N, since you will be creating
a new text file. The editor will respond by printing a car-
riage return and line feed, and wait for you to enter the
first line of source text for your file. Example 1 shows
this initial dialogue. Note that throughout this document,
what you type in will be underlined for clarity. Naturally,
this underlining does not occur when you actually use the
editor.

Example 1
STARTING THE EDITOR

3743G Starting address of the editor
BASE=4000 Hex start address of text file
N OR 0? N Specify new text file

—

Entering Text

Every line of text entered into the editor must have a deci-
mal line number between 1 and 9999. If the same line number
is used twice, the new line replaces the previous line with
the same line number. Here is what our sample would look like
as it is typed in. Note that increments of 10 are used be-
tween each line number. This is not necessary, but it makes
it easier to enter additional text lines in the future.

Example 2
ENTERING TEXT

10 POINTL=$FA
20 POINTH=$FB

30 VAL1

L0 VAL2

50 PROG CLC

60 LDA VAL1
70 ADC VAL2
80 STA POINTL
90 LAD #00
100 STA POINTH
110 JMP START

Remember that you must type a carriage return at the end of
each line you type in. Note that it is not necessary to in-
clude spaces (that is, more than one space) between fields.
The assembler will automatically insert them later. The
spaces are included in this manual for readability.

Listing the Text

To list the text you have Jjust typed in, type the character
P for Print, a space, and the character A for All. The editor will
then type back all of the text which you have typed in.

Example 3
LISTING TEXT

P A

0010 POINTL
0020 POINTH

0030 VALl
0040 VALZ
0050 PROG
0060
0070

0080
0090

0100
0110
*BT

H

$FA
$FB

1l

CLC
LDA VALl
ADC VAL2

STA POINTL
LAD #00

STA POINTH
JMP START

Note that the *ET at the end of a print command signifies

the End of Text.

Changing The Text

To make our sample program acceptable to the assembler, we
will have to add and change several lines (the program was
entered incorrectly to allow you the experience of editing
it). To add a line between two existing lines, simply type
a2 line number between the two existing line numbers, and en-

ter the text. Notice the new lines 25, 26, and 120 in example
b,

To change an existing line, type the same line number and the
new contents for that line. Notice how lines 30, 40, and 90
were changed, in example 4. Remember that a single character
in a line cannot be corrected by itself; the entire line must
be retyped.

Example 4
CORRECTING TEXT

25 *=30000 This is a new line

30 VAL] #*=3%#+1 This is a change

LO VAL2 #=#+1 Another change

90 1DA #00 Correct spelling

120 .END New line

26 _START=$1000 New line

P A Request printing of text

0010 POINTL=$FA
0020 POINTH=$FB
0025 *=$0000

0026 START=$1000
0030 VAL1 #*=%+1
0040 VALZ2 #*=%+1
0050 PROG CLC

0060 LDA VAL1
0070 ADC VAIL2

0080 STA POINTL
0090 LDA #00
0100 STA POINTH
0110 JMP START
0120 .END

*ET

You may edit and re-edit the text until you're satisfied that

it is correct. Notice that it isn't necessary to enter the
lines in line number order, but they will be entered into memory
and assembled in line number order. It is important to remember
that you must have at least one space separating the fields in
each line of text, that each line ends with a carriage return,
and that each line must begin with a line number.

Now that you've had an opportunity to see the basic operation
of the editor, we will examine each editor capability in detail.
Table 1 shows the editor command summary, explaining briefly
what each command does.

Table 1
EDITOR COMMAND SUMMARY

P A Print all stored text

Pn Print text beginning at line n

F xyz Find and print all lines containing string xyz
S ' Print status - hex origin, end of text, and

decimal number of lines in the current text
file

R Resequence line numbers by 5's

Q Query - return to BASE= query

E Exit to APPLE monitor

? Set "?" as prompt character

?x Set x as prompt character

A Go to Assembler with current text file

K© Control K - exit to APPLE monitor

i Control T - Save current text file on audio

tape

BASIC EDITOR COMMANDS

Entering Text

Text is entered into memory by typing in the line of text
preceded by a line number. Line numbers may range from 1
to 9999. There is no necessity to type leading zeroes, the
editor will insert them automatically. Note that any line
typed to the editor which does not contain a line number
will be interpreted as an editor command. If the editor
cannot recognize the line as a command, the error message
BAD COM (bad command) will be printed on the screen.

It is not necessary to "format" the text by entering spaces.
One space must separate each field on a line from the rest
of the fields on that line, but you don't need to use the
number of spaces required to make the text "line up" as it

will after it is assembled. The assembler does that for N
you.

Correcting Text During Entry

If you type in a portion of a text line and realize you
have made a mistake, there are two methods of correcting
. the error:

1. Depress the control key and hit the "X" key (con-
trol X). The line will be ignored and a carriage
return/line feed will be issued by the editor.

2. Backspace by pressing the back arrow key (&),
then retype the offending character. The editor
will back up each time you press the back arrow
key, moving one space to the left each time you
press the key. When you have retyped the offending
character, type the rest of the line - do not
press the return key until you've reached the end ”~
of the entire line. All characters on the line -

will be deleted, beginning with the character

10

under the cursor and continuing to the end of the
line, as soon as you press the return key. The
deleted characters will not be removed from the
screen, however. Example 5 shows the results of
backspacing to correct an error.

Example 5
USING 4 TO CORRECT ERRORS

step 1 10 THIS IS A MESPILLING
now the cursor is positioned immediately following the G
step 2 Press the < key 8 times, and type ISPILLING
now the line of test looks like this:

10 THIS IS A MEISPILLING
and the cursor is still positioned after the G

step 3 Press the < key 10 times and type ISPELLING
now the line looks like this:

10 THIS IS A MISPELLINGG
and the cursor is positioned over the last G on the line..
Press the return key at this point. The offending G is
not removed from the screen.
step 4 P_A
The editor prints the line on the screen

0010 THIS IS A MISPELLING

Now that you have pressed the return key, the only way to cor-
rect the line is to retype it:

0 _THTIS IS MIS LLING

While you may well forget to continue typing the line after
backspacing to correct an error (at least at first), it won't
take long to get to the point where you do it automatically,
since it works very much like the APPLE's own editor. Note

that you cannot forward space using the ARESCO Text Editor,
however. '

11

Listing The Text

You've seen how to list the entire text file by typing P A.
If you wish to only list a portion of the text, type P, a
space, and a line number. The editor will then print all of
the text, beginning with that line number, and continuing
through to the end of the file.

If you wish to only list a few lines of text, type P, space,
and a line number. The editor will begin printing out the
text, beginning with that line number. When you have seen
all the text you wish to see, press any key. This will sig-
nal the editor that you wish it to stop listing, and it will

stop printing the text and wait for another command to be
entered.

Note that depressing any key while the assembler is running
will also stop the assembler listing. However, you will be
returned to the editor, not to the assembler.

Adding A New Line To The Text

Each line you type will automatically be inserted in the text
file in line number sequence. Thus, if you wish to add a new
line between old lines 20 and 30, simply give the new line a
number between 21 and 29. If you wish to insert a new line
between two existing lines with adjacent numbers, you must
first resequence the line numbers (see Reseqguencing Lines).

There is no restriction on the number of text lines or the
size of the text file (except that line numbers must be in

the range 1 - 9999). The only restriction, then, is the amount
of memory available for such storage.

Resequencing Lines

The assembler ignores the line numbers in your file when
doing an assembly. Thus, the line numbers are a convenience
for you when you are editing text. If you wish to resequence
the line numbers, simply type an R and a carriage return. The
editor will automatically resequence all the line numbers in
your file. The first line will be the line number 5 and each
line number which follows will be incremented by 5.

Example 5

RESEQUENCING LINES

1 LINE 1
2 LINE 2

3 LINE 3

R

PA

0005 LINE 1
0010 LINE 2
0015 LINE 3

#*ET

Locating Specific Characters In The Text

In a lengthy text file it is often desirable to be able to
find all lines in the text which contain certain characters or
groups of characters. This is done with the Find command.
Example 6 illustrates the use of the Find command. First the
entire text file is listed using the P A command, then all lines
which contain references to POINTH are printed by issuing the

12

command F POINTH. The second portion of the example shows find-
ing all lines which contain an asterisk by typing F *. You must
always type a space after the F.

Example 6
FINDING SPECIFIED TEXT

PA
0010 POINTH = $FA
0020 POINTH = $FB
0025 *=$0000
0030 VALl = *+1
0040 VAL2 = *+1
0050 PROG CIC

0060 LDA VALL
0070 ADC VAL2
0080 STA POINTL
0090 LDA #00
0100 STA POINTH
0110 JMP START
0120 .END

*ET

F_POINTH

0020 POINTH = $FB
0100 STA POINTH
*ET

F *

0025 *=$0000

0030 VALL = *+1
0040 VAL2 = *+1
*ET

Exiting From The Editor

The user may return to the APPLE monitor by typing an E
(Exit) command. Never exit the Assembler/Editor by pressing
the RESET key. If your system uses the Apple Disk, and you
press RESET while using the Assembler/Editor, you will have
to reboot the DOS. You may return to the monitor using K
(control X) if you wish.

13

14

OTHER COMMANDS

The Status Command

Typing an S command to the editor will result in the
editor printing out three numbers. The first number is the
hexadecimal starting address of the current text file. The
second number is the hexadecimal address of the end of the
current text file. The third number is the decimal number
of lines contained in the current text file. If you are
entering a text file which you suspect may approach the
capacity of your available memory, you can check the amount
of memory being used from time to time as you enter the text.
You should note, however, that the S command will return
incorrect information if no text has been entered into your
current text file.

The Assemble Command

Typing an A command to the editor will terminate editor func-
tion and transfer control to the assembler program. The editor
automatically configures the assembler for a memory-to-memory
assembly of the current text file. You should note that the
transfer is made to the assembler cold start entry point so this
command may not be used in multiple file assembly. For the second
and succeding files of a multiple file assembly, you must exit
from the editor to the monitor and then enter the resident assem-
bler at its warm start point. See the assembler documentation
for further details.

15

Saving the Text on Audio Cassette Tape

To transfer your edited text to audio cassette for storage,
first insert a cassette in your recorder and assure that the
cassette recorder is properly connected to your system. To begin
transfer of the text file to the audio cassette, hold down the
control button (marked CTRL), and strike the character "T".

Before striking the carriage return, put your cassette recorder

in record mode and start the tape. Then strike the carriage

return. Before recording, you should use the S command to find

the begining and end of your text area. Make a note of it on the

tape. The editor will then transfer control to the audio cassette
routines. When the tape has been properly recorded, control will

return to the Editor. ~

Reloading the Text from Audio Cassette

When you wish to place the text you previously stored on
cassette back into memory for further editing or assembly, first
prepare your cassette system for playback. Reload the cassette
using the monitor tape load routine and entering the starting
and ending address noted when you recorded the tape. When the
tape has been read in, start the editor, give the starting address
of the text in response to the BASE= query and answer "O" to the
N OR 0? query. The text file is now ready for further processing.

~

The Query Command

Typing a Q command to the editor returns you to the BASE=
query of the editor. You may then specify a new origin for
further text entry of other text files. Previous text files.
will not be disturbed unless the files overlap in memory.

Changing The Prompt Character

It is sometimes convenient to have the editor type a prompt
character at the beginning of each line when it is ready for in-
put from the user. When the editor is initially entered, this
prompt character is set to a null. If you wish a prompt character
you simply type a question mark and carriage return and the editor
will begin each line of input with a question mark as a prompt.

If you wish to use a prompt character other than the question
mark, type a question mark, the character you wish to use as a
prompt, and a carriage return. For instance, typing a question
mark, asterisk, carriage return will set the prompt character to
an asterisk. To "turn off" the prompt character, simply type. a
question mark followed by a null (generated by depressing the
control and shift buttons on your keyboard and striking the P

key).

17

Using The ARESCO Assembler/Editor With An APPLE Printer

If you have a printer connected to your Apple II through an
Apple Parallel Printer interface card, you may use your printer
to print editor or assembler output. Before entering the editor
type:

1p© (turn on the printer board)
I°40N (initialize output)
i i (turn screen back on)

Then type 3743G to start the Editor. Type P A when you are
in command mode to list your source program or A to print the
assembled output. When you have returned to monitor mode, type
OP® to turn the printer off.

I1I

111

Iv

v

THE ASSEMBLER
Table Of Contents

INTRODUCTION....I.ll..l...l.l'Il....'.'.ll.lll.ll.l|'19
¥ 6502 INStruction Seteeeeeeeeserneeserssossasnareeasl

ASSEMBLER/EDITOR OPERATION
Memory Space RequirementSecssscseseescescssarsnneesl?
Reserving Space For The Symbol Tables:«sesaseeesessl?
Reserved Memory LocationSeisecscssescsnssnssnsscassal3
Assembling Large Source Programs From Disk
Or Caggetle TapGsssnsssnsenisevivininivsosnsesld

INSTRUCTION FORMAT
General InformatioNissssssssssssssracnssssssssnssael5
OBETEEINEE o i o 00 10 5 g 70 5 101 3 000 0 1 0 o i i g e O P 6 Y W) D
SYMbELS s vswawomswswmomnwswiios ¢ BE B 8 bis e € w8 D

ADDRESSING MODES
SYMBOLliCecencenassosanassnssssssssssssssssssasssssas’0
AbBolutEeswswsmsnsnsprsrupwessusnenonemsnsyswimagnses It
IMMNEeAIATE e iwawuwewsssessonesss s GEMEwE e 31
Relativesswsnsnnsrsswsnsuosvesdnsndninipaninswsnins 3l
ImpliedsssvsessrmninssaEssnipivecspininiCiminswsmins 32
Indexedescesesosescssaanssnssnassrssonsssnsansassans 32
Indexed Tndiregtsccscerssmosspspensnsmsnsmwenswsnams 33
Indirect Indexedesnsvsnssnenswaninsorwswensweswseans b

* Instruction Addressing ModeS.seseesrssesasansnsassel’

ASSEMBLER DIRECTIVES
B 241 P 1
SWORD &t s et v e nnnoeenennneooananeanansonnssssnaesensss3b
= (EQUATES) v vt veronnsronaennesnnsennasenssannssnesd?
WOPT...... e 08155 1010 5 5 48 Sk o Tl 13 e

18

INTRODUCTION

The process of translating a mnemonic or symbolic form of

a computer program to actual machine code is called an assembly,
and a program which performs the translation is an assembler.
The symbols used and rules of association for those symbols are
the assembly language. In general, one assembly language state-
ment will translate into one machine instruction. This distin-
guishes an assembler from a compiler, which may produce many
machine instructions from a single statement.

Normally, digital computers use the binary number system
for representation of data and instructions. Computers under-
stand only ones and zeroes, corresponding to an "on" or "off"
state. Human users, on the other hand, find it difficult to
work with the binary number system and hence use a more conven-
ient representation such as octal (base 8), decimal (base 10),
or hexadecimal (base 16). Two representations of the 6502 op-
eration to "load" information into an "accumulator" are shown
here:

10101001 _ (binary)
A9 (hexadecimal)

An instruction to move the value 21 (decimal) into the accumu-
lator is:
A9 15 (hexadecimal)

Users still find numeric representations of instructions
tedious to work with, and hence have developed symbolic repre-
sentations. For example, the preceeding instruction might be
written in assembly language as:

LDA #21 - (assembly language)

In this case, LDA is a symbol for A9, LoaD the Accumulator. A
computer program used to translate the symbolic form LDA to the
numeric form A9 is called an assembler. The symbolic program
igs referred to as source code and the numeric program is the

19

20

object code. Only object code can be executed on the processor.

Each machine instruction to be executed has a symbolic name
referred to as an opcode (operation code). The opcode for "store
the contents of the accumulator" is STA. The opcode for "trans-
fer the contents of the accumulator to index X" is TAX. There are
55 opcodes for the MOS 6502 processor (listed in Table 2). A
machine instruction in assembly language consists of an opcode and
(perhaps) operands, which specify the data on which the operation
is to be performed. '

Instructions may be labelled for reference by other instruc-
tions as shown in:

L2 LDA #21

The label is L2, the opcode is LDA, and the operand is #21. At
least one blank must separate the three parts (fields) of the in-
struction. Additional blanks may be inserted for ease of reading.
Instructions for the ARESCO assembler havc at most one operand,
and many instructions have none. In these cases, the operation
to be performed is completely specified by the opcode, as in CLC
(clear the Carry bit).

Programming in assembly language requires learning the in-
struction set (opcodes), addressing conventions for referencing
data, the data structures within the processor, as well as the

structure of assembly language programs.

ADC
AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
E@R

INC
INX
INY

JSR

TABLE 2

6502 Instruction Set - Opcodes

Add with Carry to Accumulator

""AND" to Accumulator

Shift Left One Bit (Memory or

Accumulator)
Branch on Carry Clear
Branch on Carry Set
Branch on Zero Result

Test Bits in Memory with
Accumulator

Branch on Results Minus
Branch on Result not Zero
Branch on Result Plus

Force an Interrupt or Break
Branch on Overflow Clear
Branch on Overflow Set
Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator

Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

Exclusive-or Memory with
Accumulator

Increment Memory by One
Increment X by One
Increment Y by One
Jump to New Location

Jump to New Location Saving
Return Address

LDA
LDX
LDY
LSR

N@P
@RA
PHA
PHP
PLA
PLP
RPL

R@R

RTI
RTS
SBC

SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Transfer Memory to Accumulator

Transfer Memory to Index X

Transfer Memory to Index Y

Shift One Bit Right.(Memory or

Accumulator)

Do Nothing - No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack

Pull Accumulator from Stack

21

Pull Processor Status from Stack

Rotate One Bit Left (Memory or

Accumulator)

Rotate One Bit Right (Memory or

Accumulator)
Return From Interrupt

Return From Subroutine

Subtract Memory and Carry from

Accumulator
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer Stack Register to Index X

Transfer Index X to Accumulator

Transfer Index X to Stack Register

Transfer Index Y to Accumulator

~

22

ASSEMBLER/EDITOR OPERATION

Memory Space Requirements

The Assembler/Editor resides in memory in locations 2000 -
3800. In addition, the programs use locations 0300 - 0308

and 1E00 - 1FFF for workspace. Memory space must be allocated
by the user for storage of the symbol table.

Reserving Space For The Symbol Table

The assembler will generate object code and store it at the
locations specified in the assembly language program. RAM
must exist in your APPLE at these locations. Since your
source program is also memory-resident, your object program
should not be written to the same RAM area wherein the source
code resides.

In addition to space for source code and object code, you must
reserve space in memory for the assembler to store its symbol
table while it is constructing your object program. Each
symbol you define in your source program will take 8 bytes of
memory in the symbol table. For example, 1f you expect to

use about 50 symbols in your source program, you should re-
serve at least 400 bytes for the symbol table. If the assem-
bler runs out of room in the symbol table, the program will
terminate with an error message.

You define the RAM area you wish to reserve for the symbol

table by entering the upper and lower address limits of the

area in two pairs of locations. At location 1FDF and 1FEO,

you enter the low order and high order bytes, respectively,

of the starting address of your symbol table. At locations

1FE1 and 1FE2, enter the location of the ending address of

your symbol table. For example, to reserve locations 3802

through 3B00 for your symbol table, enter the monitor and |
type (when the APPLE monitor's asterisk prompt appears)

1FDF: 02 38 00 3B

23

If you specify these locations before entering the editor

to type in your source program, you will be able to go di-
rectly to the assembler (with the A command) with the symbol
table already defined.

If you elect to specify addresses for the symbol table after
entering your source program, you must define the symbol
table addresses before using the A command to call the assem-
bler. '

Reserved Memory Locations

The ARESCO Assembler/Text Editor uses all page zero memory
locations. Object code should not be assembled into those
locations. You may use page zero locations for data storage,
but remember that the contents of those locations will be
altered by the assembler and editor during their operations.

Assembling Large Source Programs From Disk Or Cassette Tape

If you wish to assemble a source program which will not fit
all together in your available memory, you may enter it in
segments, save the source code on disk or tape, and even
assemble it in segments. (provided, of course, that the fully
assembled object code will fit in your APPLE's available
memory.)

Enter the first portion of your source program into the text
editor and store it on audio cassette or disk (see the section
on Saving Text On Audio Cassette Tape for details). Then
enter the next and succeeding portions in the same source code

memory area, designating each segment as a new file to the
editor. Save each portion on audio tape. Only the last seg-
ment should contain an .END directive.

Now play the first segment back into the same source code memo-
ry area, using normal audio tape or disk loading procedures.
Enter the editor, giving the base address of the text file and
declaring it to be an old file. Assemble the first segment,

using the A command. (Remember to define your symbol table
area first.) The assembler will return to the monitor when
it comes to the end of the file. There is no need to save
this assembled segment on tape or disk.

Now load and enter the second segment of your source code file
into the same source code memory area, using the audio tape or
disk loading procedure. Enter the editor, give the same base
address as you used for the first segment, and declare it to
be an old file. Do not use the A command to call the assem-
bler. Exit to the APPLE monitor, and enter the assembler via
location 3782 (type 3782G). The assembler will continue to
assemble your program - right where it left off with the pre-
vious file - without clearing the previously generated symbol
table or destroying the previously assembled program segment.

Continue to enter successive segments of text, entering the
editor to give the base address each time. Exit to the moni-
tor and re-enter the assembler at 3782. When the assembler
encounters the .END directive, it will print the symbol table
and terminate the assembly process. This is the time to save
the assembled object code on APPLE disk or cassette.

2L

25

INSTRUCTION FORMAT

Assembler instructions for the ARESCO Assembler are of two
basic types, according to function:

1. Machine Instructions
2. Assembler Directives

Machine instructions correspond to the 55 operations implemented
on the MOS 6502. The instruction format is

(label) opcode (operands) (comments)

Fields are in parentheses to show that they are optional. Labels
and comments are always optional and many operation codes (opcodes)
such as RTS (Return from subroutine) do not require operands. A
typical instruction using all four fields is:

LOOP LDA BETA,X FETCH BETA INDEXED BY X

A field is defined as a string of characters separated by a blank ~
space or tab character or characters. The list of opcodes for
the ARESCO Assembler is shown in Table 1.

A label is an alphanumeric string of from one to six charac-
ters, the first of which must be alphabetic. A label may not be
any of the 55 opcodes and may not be any of the special single
characters A, S, P, X, or Y. These special characters are used by
the assembler to reference the Accumulator (A), the Stack pointer
(S), the processor status (P), and index registers X and Y respec-
tively. A label may begin in any column, provided it is the first
field of an instruction. Labels are used on instructions such as
branch targets and on data elements for reference in operands.

The operands portion of an instruction specifies either an
address or a value. An address may be computed by expression
evaluation, and the assembler allows considerable flexibility in
expression formation. An assembly language expression consists of
a string of names and constants separated by operators +, -, *,

~

and / (add, subtract, multiply, and divide). Expressions are eval-

uvated left to right, with no operator precedence and no parentheti-

cal grouping. Expressions are evaluated at assembly time and not

at execution time.

26

Any string of characters following the operands field is
considered to be comments, and is listed but not processed
further. If the first non-blank character on a line is a
semi-colon (3;), the line is processed as a comment. On in-
structions which require no operand, comments may follow the
opcode. A semi-colon need not precede the comment if the com-
ment is on the same line as an instruction. At least one
space must separate the fields of an instruction.

There are five assembler directives used to reserve storage

and direct information to the assembler. Four have symbelic
names with a period as the first character. The fifth, a
symbolic equate, uses an equals sign (=) to establish a value
for a symbol. A list of the directives is given here, but
their use is explained later in the section on Assembler Direc_
tives.

«.BYTE
. NORD
. OPT
.END

Labels and symbols other than directives may not begin with a
period.

When using the assembler, remember that if you press any key
during the assembly, the assembly and listing will stop, and
you will be returned to the editor.

A typical assembler program segment is shown on the following

page to illustrate the form of the information provided by the
assembler. The formatting of text is done automatically unless

you specifically select the NOTAB option (see Assembler Directives).

Note the semi-colons preceding comments which occupy separate
lines (that is, do not occupy lines containing opcodes).

27

Example 1
A Typical Assembly Language
Program
213 076A 20 60 09 ALPHA JSR GETINS FIND START OF NEXT INSTR
214 076D A9 00 LDA #0
215 076F 85 ID STA EFLAG
216 0771 85 1E STA DFLAG NO DATA OR EFFECTIVE ADDR YET
217 ; PICK UP THE OPCODE AND BREAK IT INTO ITS PARTS
218 0773 AS 14 LDA OPCODE
219 0775 29 03 AND #%11
220 0777 85 13 STA GROUP BITS 1,0 = GROUP CODE
221 0779 AS 14 LDA OPCODE
222 077B 29 FC AND #%11111100
223 077D 4A LSR A
224 077E 85 10 STA B72
225 0781 AA TAX
227 0782 29 07 AND #%111
228 0784 85 12 STA B42
229 0786 BA TXA
230 0787 4A LSR A
231 0788 4A LSR A
232 0789 4A LSR A
233 (078A 85 11 STA B75
234 078C 20 79 09 JSR SETUP GET DATA FROM IT
235 5 SEE IF WE HAVE A LABEL TO PRINT
236 078F AF 15 LDA IADR
237 0791 85 27 STA NUMBER
238 0793 AF 16 LDA JADR+1
239 0795 85 28 STA NUMBER+1
240,0797 20 IC Q084BETA, gJ§RJdﬂFL PRINT CQBRENT P.C.,
label operand comments
object code opcode
address
memory
number

line number

28

Constants

Constant values in assembly language can take several forms,
as needed by the programmer. If a constant is other than
decimal, a prefix character is used to specify type.

$ (Dollar sign) specifies hexadecimal
@ (Commercial "at") specifies octal

% (Percent sign) specifies binary

* (Apostrophe) specifies an ASCII

literal in immediate
mode instructions

(Pounds sign) Specifies immediate
mode

The absence of a prefix symbol indicates decimal value. In
the statement

LDA BETA+5

the decimal number 5 is added to BETA to compute the address.
Similarly, in the statement

LDA BETA+$5F

the hexadecimal value 5F is to be added to BETA for address
computation. If you wish to load an ASCII character (for ex-
ample, the letter "G") into the accumulator, you would use
the apostrophe (single quote), as in the statement

LDA #'G

It isn't necessary to use a closing quote unless you have em-
bedded quotes in a string of characters. To embed quotes, type
the apostrophe twice ('') rather than use the double quotes ("),
at both the beginning and the end of the string.

Note tnat constant values can be used in address expressions
and as values in immediate mode addressing. They can also be
used to initialigze locations, as explained later in a section
on assembler directives. ’

29

Symbols

Symbols may be used to refer to addresses or to data values.
Symbols must begin with an alphabetic character, and must be
no more than six characters in length. The letters A, S, P,
X, and Y may not be used, as previously explained.

30

ADDRESSING MODES

Symbolic

Perhaps the most common operand addressing mode is the symbolic
form, as in

LDA BETA PUT BETA VALUE IN THE ACCUMULATOR

In the example, BETA refers to a byte in memory that is to be
loaded into the accumulator. BETA is an address at which a
value is located. Similarly, in the instruction

LDA ALPHA+BETA

the address ALPHA+BETA is computed by the assembler, and the
value at the computed address is loaded into the accumulator.
Both ALPHA and BETA must have been previously defined.

Memory associated with the 6502 processor is segmented into
pages of 256 bytes each. The first page, page zero, is treated
differently by the assembler and by the processor, for optimi-
zation of memory storage space. Many of the 6502 instructions
have alternate operation codes if the operand address is in
page zero memory. In such cases, the address requires only

one byte of storage rather than the normal two bytes. For
example, if BETA is located atbyte 4B in page zero memory, the
code generated for the instruction

LDA BETA
is A5 4B

This is called "page zero addressing". If BETA is at 01 3C in
page one memory, the code generated is
AD 3C 10

This is an example of "absolute addressing”. Thus, to opti-
mize storage space and execution time, a programmer should de-
sign with data areas in page zero memory whenever possibler
Note that the assembler makes decisions on which form of the

operation code to use based upon operand address computation.

3

Absolute Mode

In absolute mode, a specific address is given from which
data is to be fetched or to which a branch will be made. Any
two-byte address may be used, in decimal, hexadecimal, binary,
or octal, provided the appropriate prefix character is employed.

Immediate Mode

It is often useful to be able to reference the address
of a label as immediate mode data. The assembler recognizes
the characters < and > for this purpose. For instance,

LDA # < HERE

will load the accumulator with the low order eight bits of
the address of the byte labeled HERE, and

LDA # > HERE

will load the accumulator with the high order byte of the
address of HERE. '

Immediate mode addressing always generates two bytes of
machine code, the opcode and the value to be used as operand.
Note that constant values can be used in address expressions
and as values in immediate mode addressing.

Relative Mode

There are 8 conditional branch instructions available to
the user. An example is

BEQ START IF EQUAL BRANCH TO START

32

which might typically follow a compare instruction. If the values
compared are equal, a transfer to the instruction labelled START
is made. The branch address is a one byte positive or negative
offset which is added to the program counter during execution.

At the time the addition is made the program counter is pointing
to the next instruction beyond the branch instruction. A branch
address must be within 129 bytes forward or 125 bytes backward
from the conditional branch instruction. An error will be flagged
at assembly time if a branch target falls outside the bounds for
relative addressing. Relative addressing is used only for branch

instructions.

Implied Mode

Twenty-five instructions such as TAX (Transfer contents of
Accumulator to Index X) require no operand and hence are single
byte instructions. Thus, the operand addresses are implied by
the operation code.

Four instructions (ASL,LSR,ROR, and ROL) are special, in
that the accumulator, A, can be used as an operand. In this
special case these four instructions are treated as implied mode
addressing and only an operation code is generated.

Indexed Mode

Operands may be indexed with values in registers X and Y.
Indexing is indicated by a comma and appropriate letter follow-
ing the operand. For example

LDA BETA,Y
The value in register Y is added to BETA to form the address of
the operand. Not all instructions can be indexed and on some,

33

indexing may be permitted with one register, but not the other.
Refer to Table 2 for allowable addressing modes.

Indexed Indirect Mode

In this mode the operand address is a location in bPage zero

memory which contains the address to be used as an operand.
An example is: |

LDA (BETA,X)
The parentheses around tre operand indicate it is indirect mode.
In the above example the value in index register X is added to
BETA. That sum must reference a location in page zero memory.
During execution the high order byte of the address is ignored,
thus forcing a page zero address. The two bytes starting at that
location in page zero memory are taken as the address of the
operand. For purposes of illustration, assume the following:

BETA is 12

X contains 4

Locations 0017 and 0016 are 01 and 25

Location 0125 contains 37
Then BETA + X is 16, the address at location 16 is 0125, The
value at 0125is 37 and hence the instruction LDA (BETA,X) loads
the value 37 into the accumulator. This form of addressing is
shown in the illustration below.

LDA (operand,X)

operand ~ — - + X

value

Indirect Indexed Mode

34

Another mode of indirect addressing uses index register Y

and is illustrated by:
IDA (GAMMA),Y

In this case GAMMA references a page zero location at which an

address is to be found. The value in index Y is added to that

address to compute the actual address of the
for example that:
GAMMA is 38 (hexadecimal)
Y contains 7
Locations 0039 and 0038 are 00 and
Location 005B contains 126

operand. Suppose

54

Then the address at 38 is 0054 and 7 is added to this, giving an
effective address 005B. The value at 005B is 126 which is loaded

into the accumulator.

In indexed indirect the index X is added to the operand prior

to the indirection. In indirect indexed the
and then the index Y is added to compute the
Indirect mode is always indexed except for a
which allows an absolute indirect address as
(DELTA) which causes a branch to the address

indirection is done
effective address.
JMP instruction
exemplified by JMP
at location DELTA.

The indexed indirect mode of addressing is shown in the illustra-

tion below.

LDA (operand),Y

operand = —-D

Table 2

Instruction Addressing Modes

Page zero indexed by X
Absolute indexed by X

Immediate
Absolute

Page zero
Absolute indexed by Y

ACD
AND
ASL (1)
BIT

> >
p< < <
26 K =<
<

CPY X
CPX (2) X
DEC

EOR X
INC
IJMP (3)
JSR
LDA
LDX (2)
LDY
LSR (1)
ORA X
ROL (1)

ROR (1)

SBC X
STA

STX

STY

<
Fala i i I R
>
el o
>4

> > =

PG 2 D 3G 4 X pE B pE DK DY D4 DG pE Bd DX D X G X e E
I
>

E B B
P D < 2 K < < X K 4 <

(1) Accumulator A can also be an operand
(2) Indexing with Y
(3) Indirect is absolute indirect and not indexed

Indirect indexed

>

35

)

-

36

ASSEMBLER DIRECTIVES

There are five directives which are used to control the
assembly process, define values or initialize memory locations.
Assembler directives always appear in the opcode field of an
instruction and thus might be considered as assembly time opcodes
instead of execution time opcodes. The directives are: .BYTE,
.WORD, .OPT, .END and equates (which is denoted by the equals
sign =). All directives which are preceded by the period may be
abbreviated to the period and three characters if desired (eg., .BYT).

.BYTE is used to reserve one byte of memory and load it with
a value. The directive may contain multiple operands which will
store values in consecutive bytes. ASCII strings may also be
generated by enclosing the string with quotes.

HERE .BYTE 2
THERE .BYTE 1, $F, @3, %101, 7
ASCII .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form.
In general, any valid MCS650X expression which can be resolved to
eight bits may be used in this directive. If it is desired to
include a quote in an ASCII string, this may be done by putting
two gquotes in the string;

.BYTE 'JIM''S CYCLE'
could be used to print:

JIM'S CYCLE

-WORD is used to reserve and load two bytes of data at a
time. Any valid expression, except for ASCII strings, may be
used in the operand field.

HERE +WORD 2
THERE .WORD 1, $FF03, @3
WHERE .WORD HERE, THERE

37

The most common use for .WORD is to generate addresses, as

shown in the above example. "WHERE" stores the 16 bit addresses
of "HERE" and "THERE". Addresses in the 6502 are fetched from
memory in the order low-byte, high-byte, and therefore .WORD
generates the values in this order. The hexadecimal portion

of the second example above ($FF03) would be stored as 03 FF.

is the EQUATE directive, and is used to reserve memory loca-
tions, reset the program counter (*), or assign a value to a
symbol.

HERE #=#+1 reserve one byte
WHERE ¥*=#+2 reserve two bytes
#*=$200 set program counter
NB=8 assign value
MN=NB+%1 01 assign value

Note that expressions must not contain forward references or
they will be flagged as an error. For example,

Q=C+D-E*F

is legal only if C, D, E, and F are all defined. It is il-
legal if any of the variables is a forward reference, +to be
defined later in the program. Forward references in expres-
sions may be used in the modified two-pass version of the
ARESCO Assembler, but not in the one-pass version.

Note also that expressions are evaluated in strict left to
right order.

.OPT is the most powerful directive available, and is used to
control generation of output fields, listings, and expansion
of ASCII strings in .BYTE directives. The options available
ares

.OPT ERRORS, LIST, SYMBOLS, GENERATE, TAB

.OPT .NOERRORS, NOSYMBOLS, NOLIST, NOGENERATE, NOTAB ~

38

The operand fields in the .0OPT directive are only scanned for
the first three characters. The individual .OPT operands are

1. SYM is used to control the printing of the symbol
table at the end of the listing. The symbol table
is not sorted. If NOSYM is selected, the symbol
table is not printed.

2 ERR is used to control creation of error listing. To
view only the errors on the assembly, use

.OPT ERR,NOLIST

When all the errors have been corrected, make another
run using
.OPT NOERR,LIST

Fe LIST is used to control the generation of the listing
which contains source input, errors & warnings, and
and code generated. NOLIST suppresses the listing.

b, GEN is used to control printing of ASCII strings in |
the .BYTE directive. The first two characters only
are printed if NOGEN is used. Further characters
(normally two bytes per line) are printed if GEN is
used.

5. TAB is used to control automatic spacing of labels,
opcodes, and comments. Use of this option will save
memory space in storing the source code, since only
a single space is needed between labels, opcodes, and
comments. The assembler output will be neatly for-
matted. With narrow-carriage terminals (for example,
32 characters/line CRTs), the spacing may be objec-
tionable. Use of NOTAB suppresses the spacing.

Default settings for the .0OPT directive are

. OPT SYM, LIST, ERR, TAB

39

.END must be the last statement in a program and is used to
If no .END is used,

signal the physical end of the text file.
This is useful when

the assembler returns you to the monitor.
doing multiple-file assembly. In this case, only the last

file assembled must contain the .END directive.

ERROR MESSAGES

Error #1 Not Used

Error #2 FATAL - Tabel Previously Defined

The first field on the line is not an opcode, so it is
interpreted as a label. If the current line is the first
line in which that symbol appears as a label (or on the
left side of an equals sign), it is put in the symbol

table and tagged as defined in that line. However, if

the symbol has appeared as a label, or on the left side

of an equate, prior to the current line, the assembler
finds the label already in the symbol table. The assembler
does not allow redefinitions of symbols and will, in this
case, print the error message.

-\ Error #3 FATAL - TIllegal Or Missing Opcode

The assembler searches a line until it finds the first non-
blank character string. If this string is not one of the

55 valid opcodes, it assumes the string is a label and
places it in the symbol table. 1t then continues parsing
for the next non-blank string. If none is found, the next
line will be read in and the assembly will continue. How-
ever, if a second field is found, it is assumed to be an
opcode (since only one lable is allowed per line). If this
character string is not a valid opcode, the error message is
printed. This error can occur if opcodes are misspelled, in
which case, the assembler will interpret the opcode as a
label (if no label appears on the line). It will then try
to assemble the next field as the opcode. If there is
another field, this error will be printed. Check for more
than one label on a line or a misspelled opcode.

Error #4 FATAL - Address Not Valid

An address referred to in an instruction or in one of the
assembler directives (.BYTE and .WORD) is invalid. In the
case of an instruction, the operand that is generated by
the assembler must be greater than or equal to zero and
less than or equal to FFFF, ¢ (2 bytes long). This excludes
relative branches which are limited to +127 bytes from

the next instruction. If the operand generates more than
two bytes of code, or is less than zero, this error mes-
sage will be printed. For a .BYTE, each operand is limi-
ted to one byte, and for a .WORD, each operand is limited
to two bytes. All operands must be greater than or equal
to zero. This validity is checked after the operand is
evaluated. Check for values of symbols used in the operand
field (see the symbol table for this information).

Error #5 FATAL - Accumulator Mode Not Allowed

Following a legal opcode and one or more spaces is the let-
ter A, followed by one or more spaces. The assembler is
trying to use the accumulator (A means "accumulator mode”)
as the operand. However, the opcode in the statement is
one which does not allow reference to the accumulator.
Check for a statement labelled A (an illegal label) to
which this statement is referring. If you were trying to
reference the accumulator, look up the valid operands for
the opcode used.

Error #6 FATAL - Forward Reference In .BYTE or .WORD

Error #7 FATAL - Ran Off End Of Line

This error message will occur if the assembler is looking

for a needed field and runs off the end of the line before

the field is found. The following should be checked for:

1. A valid opcode field without an operand field on the
same line.

b2

2. An opcode that was thought to take an implied operand
which in fact required an operand.

3. An ASCII string that is missing the closing quote (be
sure any embedded quotes are doubled - to have a quote
at the end, there must be three quotes: 2 for the em-
bedded quote and 1 to close off the string).

L, A comma at the end of the operand field indicates that
there are more operands to come. If there aren't any
other operands, the assembler will run off the line
looking for them.

Error #8 FATAL - Label Doesn't Begin With An Alpha-

Error #9 FATAL - Label Greater Than Six Characters

betic Character.

The first non-blank field is not a valid opcode. Therefore
the assembler tried to interpret it as a label. However,
the first character of the field does not begin with an
alphabetic character and the error message is printed.
Check for an unlabelled statement with only an operand
field that does start with a special character. Also

check for illegal labels.

All symbols are limited to six characters in length. When
parsing, the assembler looks for one of the separating
characters to find the end of a label or string. If other
than one of these separators is used, the error message

will be printed - providing the illegal separator causes

the symbol to extend beyond six characters in length. Check
for no spacing between labels and opcodes. Also check for

a comment line with a long first word that doesn't begin
with a semi-colon. In this case, the assembler is trying

to interpret part of the comment as a label.

b3

Error #10 FATAL - Tabel Or Opcode Contains Non-Alpha-
numeric Character

Labels are made up of from one to six alphanumeric digits.
The label field must be separated from the opcode field by
one or more blanks. If a special character or other separa-
tor is between the label and the opcode, this error message
might be printed.
The 55 valid opcodes are each three alphabetic characters.
They must be separated from the operand field (if one is
necessary) by one or more blanks. If the opcode ends with
a special character (such as a comma), this error message
will be printed.
~In the case of a lone label or an opcode that needs no
operand, they can be followed directly by a semicolon to
denote the rest of the line as a comment.

Error #11 FATAL - Forward Reference In Equate Or Org

The expression on the right side of an equals sign contains
a symbol that hasn't been defined previously. One of the
operations of the assembler is to evaluate expressions or
labels and assign addresses or values to them. The assembler
processes the input values sequentially which means that all
of the symbolic values that are encountered fall into two
classes--already defined values and not previously encounter-
ed values. The assembler assigns defined values and

builds a table of undefined values. When a préviously used
value is discovered, it is substituted into the table.

A label or expression which uses = yet undefined value is
considered to be referenced forward to the to-be-defined
value.

To allow for conformity of evaluating expressions, this
assembler allows for one level of forward reference so that
the following code is allowed:

Ly

s

Error #11 (Continued)

Line Number Label Opcode Operand
100 BNE New One
200 New One LDA #5

but the following is not allowed:

Line Number Label Opcode Operand
100 BNE New One
200 New One Next + 5
300 Next LDA #5

This feature should not disturb the normal use of labels,
The cure for this error

Line Number Label Opcode Operand
100 BNE New One
300 Next LDA #5
301 New One Next + 5

is very simple and always solves the problem.

This error may also mean that the value on the right
side of the = is not defined at all in the program in which
case the cure is the same as for undefined values.

Due to the sequential processing of the assembler and
the dependency of the value of the program counter on symbols,
throughout the rest of the program, the assembler cannot
process a forward reference in this type of statement.

All expressions with symbols that appear on the right side
of any equals sign must refer only to previously defined
symbols for the equate to be processed.

Error #12 FATAL - Invalid Index. Index Must Be X Or Y

After finding a valid opcode, the assembler looks for the
operande In this case, the first character in the operand
field is a left paren. The assembler interprets the next
field as an indirect address which, with the exception of
W/ the jump statement, must be indexed by one of the index
registers, X or Y« In the erroneous case, the character
the assembler was trying to interpret as an index register

b5

Error #12 (Continued) was not X or Y and the error was printed.
Check for the operand field starting with a left paren.
If it is supposed to be an indirect operand, recheck the
format for the two types available. If the format was
wrong (missing right paren or index register), this error
will be printed. Also check for missing or wrong index
registers in an indexed operand (form: expression, index
register).

Error #13 FATAL - Invalid Expression In Operand

In evaluating an expression, the assembler found a character

it couldn't interpret as being part of a valid expression.

This can happen if the field following an opcode contains

special characters not valid within expressions (e.g. ”~
parentheses). Check the operand field and make sure only '
valid special characters are within a field (between commas).

Error #1l4 FATAL - Undefined Assembler Directive

All assembler directives begin with a period. If a period

is the first character in a non-blank field the assembler
interprets the following character string as a directive.

If the character string that follows is not a valid assembler
directive, this error message will be printed. Check for a
misspelled directive, or a period at the beginning of a

field that is not a directives.

Error #15 . FATAL - Invalid Operand For Page Zero Mode

Error #16 FATAL - Invalid Operand For Absolute Mode ~

o

L6

Error #17 FATAI, - Relative Branch Out Of Range

All of the branch instructions (excluding the two jumps)
are assembled into 2 bytes of code. One byte is for the
opcode and the other for the address to branch to. To
allow a forward or backward branch, this branch is taken
relative to the beginning of the next instruction, accord-
ing to the address byte. If the value of the byte is 0-127
the branch is forward; if the value is 128-255 the branch
is backward. (A negative branch is in 2's complement form).
Therefore, a branch instruction can only branch forward or
backward 127 bytes relative to the beginning of the next
instruction. If an attempt is made to branch further than
these limits, the error message will be printed.

Error #18 FATAL - Illegal Operand Type For This

Instruction

After finding an opcode that does not have an implied operand,
the assembler parses the operand field (the next non-blank
field following the opcode) and determines what type of operand
it is (indexed, absolute, etc.). If the type of operand found
is not valid for the opcode, this error message will be printed.
Check to see what types of operands are allowed for the opcode
and make sure the form of the operand type is correct (see the
section on addressing modes).

Error #19 FATAL - Out Of Bounds On Indirect Addressing

An indirect address is recognized by the assembler by the
parentheses that surround it. If the field following an op-
code has parens around it, the assembler will try to assemble

b7

Error #19 (continued) it as an indirect address. Since
indirects work only in bage zero memory, if the address
in the operand field is larger than 256 (one byte), this
error message will be printed.

This error will only occur if the operand field is in correct
form (i.e. an index register following the address), and the
address field is out of page zero. To correct this, the
address field must refer to bage zero memory, S

Error #20 FATAL - A, S, P, X, and Y Are Reserved
Labels

A label on a statement is one of the five reserved names

(A, X, Y, S AND P). They have special meaning to the assembler

and therefore cannot be used as labels. Use of one of these ~
names will cause the above error message to be printed and no

code to be generated for the statement. The label does not

get defined and will appear in the symbol table as an un-—

defined variable. Reference to such a label elsewhere in the

pProgram will cause error messages to be printed as if the

label were never declared.

Error #21 FATAL - Program Counter Negative! Reset To 0

An assembled program is loaded into core from position O to

6LK (65536). This is the extent of the machine. Instruc-—

tions can only refer to up to 2 bytes of information.

Because there is not such a thing as negative memory, an

attempt to reference a negative position will cause this

error and the program counter (or pointer to the current

memory location) will be reset to O. ~
When this error occurs, the assembler continues assembling

the code with the new value of the program counter. This

48

Error #20 (continued) could cause multiple bytes to be
assembled into the same locations. Therefore, care is
to be taken to keep the program counter within the pro-
per limits.

Error #22 FATAL, - Invalid Character. Expecting "="
For Org

Other error messages are mnemonic, such as BAD COM, for Bad
Command, in the Editor. They are self-explanatory, and hence

are not discussed herein.

k9

APPENDIX A

Modifying The ARESCO Assembler For Two Pass Operation

Normal operation of the ARESCO Assembler/Text Editor allows

the assembler portion of the package to assemble the source
file into object code during a single reading of the file.

The assembly is therefore fairly fast. The original ver-

sion of the ARESCO Assembler was designed for the KIM-1,

and it was an advantage to be able to assemble lengthy pro-
grams read from punched paper tape, without having to read

the paper tape source code twice. In the version of the as-
sembler designed for the APPLE II, this is no longer a benefit.

In order to assemble in a single pass, the assembler must

build a symbol table and generate object code simultaneously. ”~
This works fine, except when the assembler is required to

resolve forward references. (A forward reference is the use

of an operand not previously defined, with the intention of

defining the operand later in the program.) Consider this

example:

10 ILDY #04
20 CMP $43
30 BNE DONE
40 CLC

50 DONE JMP $1C00
60 .END

When the assembler encounters the label DONE in line 30, it

cannot calculate the relative branch offset, because it does

not yet know the address of the label DONE. It handles this

situation by reserving two bytes for the branch offset, marking

the 'symbol table entry for DONE as an undefined reference. The ~
notation "##" is printed in the listing of the assembled code.

When DONE is defined in line 50, the assembler makes the cor-

50

rect entry in the symbol table, goes back and calculates the
correct branch values for previous references to DONE, and
inserts these values into the object code. The second byte
reserved for the branch offset is set to EA (a NOP instruction).

If you assemble our example program, you will see that the
branch address is listed as "#*#", If you examine the object
code generated by the assembler, you will see that the correct
value for the relative branch was automatically inserted into
the object code, and is followed by an EA (NOP) instruction.

For most quick assemblies, this single-pass operation is
simple and quite sufficient. For lengthy programs, however,
a two-pass assembler may be needed, and it is easy to modify
the ARESCO Assembler to provide the two-pass operation.

Modifications To The Assembler

Modify the following locations using the APPLE monitor:

257A: 4C FO_30

30F0: Bl 52 AO 03 29 1F C9 10
30F8: DO 01 88 A9 01 4C 7D 25
3782: 20 11 37 4C 11 20

and save this modified version on disk or tape (2000.3800W).

Using The Modified (Two-Pass) Assembler

To use this new two-pass assembler, follow these simple steps:

1. Set the symbol pointers (1FDF-1FE2), as usual.

2. Enter the editor at 3743, as usual.

3. Input and correct the source code, as usual.

L, Assemble the source code, using the A command - and ignore
any resulting error messages.

5. When the assembler exits to the APPLE monitor, restart the
assembler by entering 3782G (3782 is the assembler "warm
start" address). This will produce a correct listing and
a proper object code. There will be no asterisks in the
listing, and forward branches will be a single byte.

51

Note that when the one-pass assembler is in operation, the
program counter is set to $200 if no "#*=" statement is found.
When using this modified, two-pass version of the assembler,
the first line of the source code MUST be a definition of the
program counter, such as

5 #=$200

The two-pass assembler will not work correctly without such
a statement as the first line of code in the program.

Additional Modifications To The ARESCO Assembler/Text Editor

The ARESCO Assembler/Editor was originally designed to run on
a KIM/TIM 6502 microcomputer. When the package was redesigned
for the APPLE, massive page zero conflicts occurred. This
problem was circumvented by keeping two copies of page zero in
memory, one for use by the assembler/editor and one for use by
the monitor I/0 and disk routines. The assembler's page zero
is stored in page 1F while the I/0 and disk routines are being
used, and the monitor's page zero is stored in page 1E while
the assembler/editor is being operated. Locations 0300 through
0306 are used as temporary storage locations to preserve the
values of A, X, Y, and P during I/0 calls from the assembler/
editor.

The MONASM routine located at #3711 saves the monitor's page
zero and loads the assembler's page zero. The ASMMON routine

at location $36DF saves the assembler's page zero and loads

the monitor's page zero. All assembler/editor I/0 routines
begin with a call to ASMMON and end with a call to MONASM. Only
the contents of register A are passed between the monitor and
the assembler.

The following I/0 routines are included in the assembler and
may be disassembled, examined, and modified by the knowledge-
able user:

52

Assembler/Editor cold start 3743
Assembler warm start 3782
Input a character 36BD
Output a character 36D3
Carriage return 36D1
Bell 376C
Exit to APPLE monitor 377C

The last memory location actually used by the ARESCO Assembler/
Text Editor is $37A2. Within the assembler/editor, all charac-
ter data is in true ASCII code, not the quasi-ASCII normally
used for APPLE I/0.

Source Text Format

Source Text is stored in APPLE memory in standard ASCII. Each
line of text stored in memory begins with the two byte line
number in BCD, and is stored in high-order, low-order byte
sequence; not as low, high. Each line is terminated with a

0D (carriage return). The end-of-file mark is 1F following
the final OD.

For More Information

A complete, commented listing of the original ARESCO Assembler/
Text Editor for 6502 based microsystems is available from ARESCO
for $20.00. The original version does not contain some of the
minor patches which have been added to the package over the

past three years.

ARESCO also publishes the Rainbow, a newsletter devoted exclu-
sively to APPLE II owners. See the last page of this document
for subscription information.

53

APPENDIX B
Sample Runs

A disassembled listing of a subroutine to "click" the APPLE's
speakers was published in the ARESCO Rainbow in January, 1979.
(See Basic Music & Sound Effects, Issue 1, Volume 1, page 17.)

A greater segment of the program from which that subroutine was
taken is used here to illustrate the operation of the ARESCO
Assembler/Text Editor Package For The APPLE II.

First, the Editor portion of the package is entered and the
program is listed. The assembler is called, and the program
is listed during assembly. The asterisks in lines 110, 120,
and 130 indicate the space reserved for forward references.

In the later disassembly, the addresses referenced are present,
followed by an EA (NOP) instruction.

After the modifications for the two-pass version of the assembler
have been made, the editor is again entered, and the assembler

is called. The asterisks are still present, and spurious errors
have been generated.

The errors are ignored, and the assembler is entered at $3782
for the second pass. Now the forward references are properly
calculated and the asterisks replaced. Again, the resulting
machine code is shown, then disassembled using the APPLE's
resident disassembler. Notice the absence of the EA instruction
in the branch instructions in the two-pass assembler version.

il
BoE=408
HR 0

4509 4147 AR
28

Sample Zditor Run

Start the Editor
Text starts at $4000
Specify old file

Status
Print out the file

P81R ; SUBROUTINE TN GEMERATE TOHES
8020 =$2m

0930 PITCH +=01

08 LONG =41

8858 CLICK = 4039 ; CLICK SPERKER
0368 WRIT = $FCAD ; DELAY SR
8379 ENTRY LDA CLICK ; MAKE CLICK
2268 108 PITCH

#4198 JR WaIT

8leA L0R LoMGL

8112 pE LogP

B129 DEC [N

£1% BEQ PND

149 LO0P DEC L0

439 P ENTRY

B1FR BN RTS

8178 LONGH . BYTE 9 ; DURATION HI BYTE
aea 8o

$E]

I=

RS0

LIE $ 100 €O0F

2210 1200

B8 ame

9539 00ea

M2 a1

AR 2682

8868 ae82

7a a2 D 38 08
0390 005 1) 88 83
8092 60RR 20 A8 FU
2100 0298 A0 &1 &8
8110 B00E D8 & =
2120 G811 CE # =
8130 @814 F8 & =
Ri4h 8817 CE &1 &R
A138 BR1A 4 &2 98
@68 ae1D 64
8178 BGIE AR
#189 M01F

ERRIRS = 0pne

Y0 TRELE

LINE

s SUBROUTISE TO GENFRATE TORES
=480
PITH =i
LONGL 4=k
QIX = soa8
WAIT = FOR8
ENTRY LDA CLICK

i CLICK SPEAKER
i DELAY 9B
; MKE CLICK

L0%P DEC LONGL

PITH 02 LONGL @ef1 CLICK OB WRIT FORR
ENTRY @882 LO0P @817 LONGH @fE BN @D

END OF ASSEMELY

Ask for assembly
Single-pass version

Set origin
Reserve space

Define subroutines

Forward references

; URATION W1 BYTE

55

1988 1F Show results

ER-VURDVED MRS
B- R AFCA A AR DA A
8- ERCEIE AR FR @7 EACE
B-MeaReamg

3308 BIFL Disassemble the code
with the APPLE monitor

o8- M BRY

wal- M BRY

@2- MW IR 8w

88 meaas 10A AR

692- 28RRFC IR oM

8- el@ (DR e

- e BE 887

f31e- e \

M- CE1E@ DI $88(F Generated by forward references
®Bl4- AW B0 $R01D in branch instructions
W6 MP /

®Bi7- CE@1 88 DEC 4met

@i 428 P o

@i RTS

M- M BRK

56

57

Sample Run Using The Two-Pass Modification To The Assembler

4%
BRSE=408
NR 0

4823 4147 BR1R
f

fRESH
LI 8100 CODE

a8 a8
o

o am

640 a8l

on e

697 @282 D 28 (R
EeanpEe
68% 0382 9 MR FC
8169 8328 AD A1 82
8118 B30E = =
B0 RIACE s »
A38 8312 = e

R M PC=

B4a WIS CERL &
M ane

IR M PL=

2168 8318 6
8178 a8iC M
Bi%8 81D

ERRORS = A2

Enter The Editor

Assemble pass one

LINE
+ SUBROUTINE TO GENERATE TONES

PITCH #=%#1

LONGL =l

fLICK = 4083 ; CLICK SPERKER
HAIT = $FCA3 ; DELRY SR
ENTRY LDR CLICK i MRKE CLICK

CEFF

e Ignore the errors

CEFF
2]
LNGH BYTE @3 ; DURATION HI BYTE

SR TRRLE

PITCH f8Ae (ONGL RSRl (LIK (@38 WAlT FOAB

ENRY f8g7 LOOP 8315 LONGH mBiC B 8218

B OF RSSEFRLY

] - : / Start pass two
e

LIN #1100 CODE LINE

ama an i SUBRDUTINE TO GEMERATE TONES

B30 AAR PITCH 3=##1

2848 #R91 LONG. il

58 A fLIX =403 ; TLICK SPERKER

2069 aa BT = ; DELRY B

f478 /332 AD 20 08 ENTRY 1DR CLICX i MRKE CLICK

7038 AYAS AD 74 AR LDR PITCH

008 2803 22 MR O JR WARIT

2189 8208 AD 81 89 L0A LONGL

BB A00F DR 83 RHE L0OP

8129 8818 (F 1C &2 DEC LONGH Forward references 0K
B8 #313 FA 86 BEG £ND

fi4 BR15 CE 81 88 LOOP DEC LONGL

58 8318 40 82 A9 TP BiRY

8178 B30 M LONGH .BYTE % S DURRTION HI BYTE

#4189 aMD g

ERRIRS = fgg2 Note that error count is

not reset after pass one

58

g% LN eeAl CLIK OB WRIT

Bl TRELE

PITCH

BRY @2 0P @IS
B9 OF fS5EMBLY

B

M- MEDBERRR
M- NI ANBNE
M- CEICAFABECERL B8
-4 RBABER
8l

oe- # BRK

p@2- Mp\CA DA sCAM
Ma- e DA e
M- 2 RFC IR SRS
gee- Ro@ies LDA sEeM
0E- A BNE $8813
aMe- CEIC@e DEC @il
813- Fa8 BER $@RiR
g5 CEAleg DEC s8em
mie- 4w\ P omw
@R~ 64 RTS
®ic- & BRK

22

Show results

Disassemble the code
with the APPLE monitor

BOX 43, AUDUBON, PA 19407
(215) 631-9052

The Rainbow is an independent, national newsletter dedicated
to APPLE II owners. It's published ten times a year (every

month except July and December) and a subscription includes

all ten issues of the current volume.

The Rainbow is a user newsletter dedicated to the non-pro-
fessional computerist. It's the only newsletter to acknow-
ledge the fact that people have to start somewhere before
they get to be "experts".

The Rainbow is intended to be an information exchange - you
can learn about the projects for which other people use their
APPLEs - and share your own experiences and discoveries.

Find other APPLE owners in your area - or communicate with
APPLE owners in other countries. The whole world of APPLE
users is available to you through the pages of the Rainbow!

Send us your name, address, and a check or money order for
$15.00 (the price includes all ten issues of the current vol-
ume). By return mail, you'll receive your copy of the Rainbow
Questionnaire to fill out and return, so we'll know what you
want to see in the newsletter. If you live outside the USA,
and don't want to wait the three-to-four weeks required by
surface (international) mail, include $10.00 for airmail
postage. Please send us a street address - if we're shipping
back issues, we ship via UPS - or an additional $0.40 per

copy for domestic postage. No invoicing. Sorry.

Please ship me all the back issues of this volume, and enter
my subscription for the current volume of The Rainbow. I en-
close payment in full, including postage if required.

NAME

ADDRESS
CITY, STATE, ZIP

CHECK /MC/VISA CARD #
If using Master Charge, we need the other 4 digits on the card

EXP DATE SIGN

Mail to: THE RAINBOW * P.O. BOX 43 * AUDUBON #* PA * 19407

60

N TR RESy & I TR,

